Discovering Emerging Patterns for Anomaly Detection in Network Connection Data
نویسندگان
چکیده
Most intrusion detection approaches rely on the analysis of the packet logs recording each noticeable event happening in the network system. Network connections are then constructed on the basis of these packet logs. Searching for abnormal connections is where the application of data mining techniques for anomaly detection promise great potential benefits. Anyway, mining packet logs poses additional challenges. In fact, a connection is composed of a sequence of packets, but classical approaches to anomaly detection loose information on the possible relations (e.g., following) between the packets forming one connection. This depends on the fact that the attribute-value data representation adopted by classical anomaly detection methods does not allow either the distinction between connections and packets or the discovery of the interaction between packets in a connection. In order to face this issue, we resort to a Multi-Relational Data Mining approach which makes possible to mine data scattered in multiple relational tables (typically one for each object type). Our goal is to analyse packet logs of consecutive days and discover multivariate relational patterns whose support significantly changes from one day to another. Discovered patterns provide a human-interpretable description of the change in the network connections occurring in consecutive days. Experimental results on real traffic data collected from the firewall logs of our University Department are reported.
منابع مشابه
Behavior-Based Online Anomaly Detection for a Nationwide Short Message Service
As fraudsters understand the time window and act fast, real-time fraud management systems becomes necessary in Telecommunication Industry. In this work, by analyzing traces collected from a nationwide cellular network over a period of a month, an online behavior-based anomaly detection system is provided. Over time, users' interactions with the network provides a vast amount of usage data. Thes...
متن کاملMachine Learning for Drug Overdose Surveillance
We describe two recently proposed machine learning approaches for discovering emerging trends in fatal accidental drug overdoses. The Gaussian Process Subset Scan enables early detection of emerging patterns in spatio-temporal data, accounting for both the non-iid nature of the data and the fact that detecting subtle patterns requires integration of information across multiple spatial areas and...
متن کاملMoving dispersion method for statistical anomaly detection in intrusion detection systems
A unified method for statistical anomaly detection in intrusion detection systems is theoretically introduced. It is based on estimating a dispersion measure of numerical or symbolic data on successive moving windows in time and finding the times when a relative change of the dispersion measure is significant. Appropriate dispersion measures, relative differences, moving windows, as well as tec...
متن کاملAssessment Methodology for Anomaly-Based Intrusion Detection in Cloud Computing
Cloud computing has become an attractive target for attackers as the mainstream technologies in the cloud, such as the virtualization and multitenancy, permit multiple users to utilize the same physical resource, thereby posing the so-called problem of internal facing security. Moreover, the traditional network-based intrusion detection systems (IDSs) are ineffective to be deployed in the cloud...
متن کاملA Survey on Anomaly Detection for Discovering Emerging Topics
This paper identifies various concepts involved in social networks for finding the emerging topics. We focus on the various methods that can be applied for detecting the anomaly. The methods used are Hidden Markov Model, UMass Approach, CMU Approach, Change Finder method and Finite Mixture Model. These methods involve texts, videos, audios, URLs and mentions which are shared in the social netwo...
متن کامل